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Abstract—The influence of the elastic foundation configuration on the large deflection axisymmetric
response of cylindrically orthotropic thin annular plates is examined for uniformly distributed loads.
The solution of the dynamic form of the Von Karman type equations governing the behaviour of
the system is obtained using a fourth order finite difference representation for the spatial domain
with the Newmark-f scheme being used for the time domain. Results for the fixed edge and simply
supported imnmovable edge boundary conditions for a plate on & Pasternak foundation with or
without an annular cut-out are presented for both the static and step loading cases. The inner edge
boundary conditions for these configurations of a Pasternak foundation are examined and the
apparent anomaly of the annulur foundation increasing the stiffness in the recent literature
addressed. The significance of the foundation parameters on plate response as well as the geometric
non-lincarity is considered.

L. INTRODUCTION

With the economic demand for material efficiency combined with the need to improve the
resistance of structures to large dynamic loads such as can occur due to carthquakes,
industrial explosion or wave action in offshore structures there has been an increasing
interest in large deflection dynamic analysis. Recent earthquake experience (Pender and
Robertson, 1987 Rutledge, 1988) has focussed attention on the mounting and anchoring
of structures such as storage tanks and pressure vesscls as well as heavy duty equipment.
This often involves the use of annular plates in conjunction with elastic foundations.

Sinha (1963), using the Berger assumption (1955) to effectively decouple the governing
cquations describing the plate behaviour, investigated the geometric non-lincar static deflec-
tion of an isotropic circular plate on a Winkler foundation based on a series solution. A
single term Galerkin technique was applied by Datta (1974) and Banerjee (1976) with the
value of the Berger constant being determined by the specific boundary conditions following
appropriate transformation.

The dynamic geometric non-linear response of an isotropic circular plate on a Winkler-
Puasternak foundation has been studied by Nath (1982) by extending the technique of Alwar
and Nath (1977) to include the foundation reaction. A backward difference Taylor series
expansion was used to linearize the dynamic form of the von Kiarman equations for the
plate/foundation combination with the spatial domain being described by a series solution
using Chebyshev polynomials, the associated recurrence relationships and the specified
boundary conditions. The time domain was represented by the Houbolt four-point algo-
rithm with the resultant set of equations solved to determine the coetflicients for the
Chebyshev polynomials.

An alternative solution for an orthotropic plate on a Winkler-Pasternak foundation
was presented by Dumir (1987) using an orthogonal point collocation representation based
upon the zeros of a Legendre polynomial for the spatial domain with the Newmark-f
scheme defining the time domain.

The solution for orthotropic annular plates on elastic foundation was presented by
Nath and Jain (1983) using the Chebyshev polynomials and the implicit Houbolt scheme
with the inner boundary condition being that associated with an annular foundation.
Unfortunately the majority of the data presented are of a vertical deflection amplitude that
results in the in-plane deflection contribution being negligible. Recently, Dumir (1988)
extended the orthogonal point collocation method to consider orthotropic annular plates
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on an elastic foundation. [n addition an energy method to determine the maximum transient
deflection. using results from a static analysis. was presented. The selection of an inner
boundary condition appropriate to a continuous foundation. while stating that the study
presented results for an annular foundation. gave a deflection for the Pasternak foundation
which was less than that reported by Nath for equivalent load cases. Dumir attributed these
differences to Nath having used a continuous foundation.

To clarify this apparent anomaly the present investigation was carried out using finite
differences to represent the spatial domain and a Newmark-8 recurrence scheme based
upon the finite element representation of the time domain. after Zienkiewicz (1977). The
dynamic von Karman equations were solved for the Pasternak foundation with the geo-
metric non-linearity being implemented as a pseudo-load. Iteration to convergence was
carried out at each time step. Both the continuous and annular foundation were considered
and the resultant data examined in relation to previously reported information in the
literature.

2. GOVERNING EQUATION

The model used to define the reaction at the plate/foundation interface was
plr.t) = kywtkow' —gViw
incorporating the well known cases used by Dumir (1988)

ki#0. kng=0 The Winkler foundation
k20,9 #0, k=0 The Pasternak foundation (1954)

ki, k.20, g=0 The Nonlincar Winkler Foundation following Massalas and
Kafousias (1979).

While the inertia of the foundation could be included, following Viasov and Leonticr (1966),
by the use of an effective mass density for the plate, to simplify the case for the continuous
foundation the assumption that the foundation was muassless was adopted. 1t should be
noted that the effective incorporation of the foundation mass modifies the relative dimen-
sionless time parameter but does not influence the resultant amplitude of the deflection.
The two foundation cases considered were 4 continuous foundation (Fig. 1a) and an
annular foundation (Fig. 1b). The inner boundary for the plate was a free edge condition
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Fig. 1. Geometry of annuluar plates and foundations. (1) Continuous foundation, fixed edge outer
boundary. (b} Annular foundation. simply supported, immovable edge outer boundary.
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Response of annular plates on Pasternak foundations 1075

while the outer boundary conditions considered were the fixed edge boundary and simply
supported immovable edge conditions.
The governing equation for the plate/foundation combination after Huang (1972) was

,
D[u-.,,,, + 2w LA ?»] —g(r.t) 4 mhw , + mhk,w , +p(r. 1)
e ;

Eh 1 v . y ¥
el o, Ju+ Sut %(vt’.,)') +(w,,)(u,, + U, — st w,,)(w,,,)) =0
B—v; r r r re

} U 1“"\'9 +
U,y -, p—=+in,)w,, — AW, =
b =B 5+ 0000 )+t ()

where a = outer radius; b = inner radius; /# = plate thickness: &, = viscous damping:
m = plate density ; p(r. £} = load ; g(r. 1} = foundation reaction ; r = radial position; u = in-
plane deflection ; w = vertical deflection ; D = flexural rigidity ; § = orthotropic parameter ;

D = Euhj . _ _Eu _ ‘:fj
T R(B-v) TE v

with £,. E, and v,, v, being the elastic moduli and Poisson’s ratio for the plate material in
the circumferential and radial directions respectively. A subscript variable following a
comma denotes partial differentiation with respect to the variable.

Substituting for the foundution reaction the non-dimensional form of the governing
equations becomes

2 i fi 12(ff—v) . N !
X o+ o™ p::J.,,+ LY o YA T i+ Ko+ Ka'—Gla,,+ )%

s ! R 7P ) Vg, v, |
- l“‘) a-l'}'+ p aul‘ &J“*— ﬂ S + 2‘5 (a.;') +(a.p) C,ml + ’; g.[l“ p} + s(a.;l)(a.,n,r) = 0

{ _‘_( Ma,,) l—-v,, = 0.0
;;2 +(§ Y | C P + 2{)# (xﬁ)"' -

. l

$op + p C.p —'[1
where a=wih; p=rja; d=alh; {=uh, t=uDimha®)' ?; 7y =k (mha'/D)"?,;
G =g(a*|E): K, = k(d*|E}; & = bla; Ky = ky(a*| EN); e(p, 1) = ¢lr. ) (| ERY).

2.1, Boundary conditions
The boundary conditions used to solve the governing equittions were as follows.

2.1.1. Inner boundary p = £. Since the inner edge is a free boundary the radial in-plane
stress is equated to zero, i.e.

By i )
{,,,+ ‘; + 53(24,) = 0.0.

For the linear and non-lincar Winkler foundation models the resultant deflection was
independent of the foundation configuration. For the Pasternak model the response was a
function of whether the associated “shear layer™ was continuous at the inner boundary or
discontinuous, because this determined the generalized shear force acting, The model
proposed by Dumir (1988) for the annular foundation does not allow for discontinuity in
the derivative (x,) with respect to the foundation and therefore the resultant values of
deflection given arc appropriate to the continuous foundation not the annular foundation.
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(1) Continuous foundation
The generalized shear force for the inner free edge is given by

¢ = (z_,,,,p + 11_,,, — Ezz_, - MG%) = (.
p p B

(i1} Annular foundation

2.1.2. Quter boundary p = 1.
(i) Clamped immovable edge condition

(2 o ¢=o.

dp -t

a =0,

(1) Simply supported immovable edge condition

2 -
dra v dn
=0, (=0

i T pap T

3. NUMERICAL SOLUTION

A finite difference representation for the spatial domain was used to numerically solve
the governing cquations for the given boundary conditions while it recursive scheme was
adopted to model the time domain following Zienkiewicz (1977).

The geometric non-lincar contribution was implemented as a “pscudo-load™ associated
with the forcing function. Therefore the only matrix inversions required were those associ-
ated with establishing the initial finite difference schemes for the transverse and in-plane
deflection of the plate. The initial solution for trunsverse deflection was calculuted using
the in-plane deflection from the preceding time step and iteration based upon the updated
“pseudo-load™ carried out until the convergence criterion was satisfied. The convergence
criterion adopted was that the variation for the vertical deflection between successive
iterations was less thun 0.1%.

The governing equation in the spatial domain for the transverse deflection at any time
T was

Max,, +Ca,+Ka+F =0

where M = mass matrix; = identity matrix because of non-dimensional time parameter
used; C = viscous dumping cocflicient; K = matrix of coefficients; a = transverse dis-
placement vector ; F = the forcing function containing “pscudo-load™.

The time domain was represented by the following generalized three-point recursive
relationship

(M +7AtC+ BATK] 2, +[—2M + (1 =27)A1C+ (L +7~2B)At°K]a,
+[M+ (3= DAC+( =y +PATK]2,_  +(BATF,,
++7-2PATF, + (} =y + PATF,_, =

and numerical experimentation was carried out to determine the optimum procedure for
the specific solution scheme. It was established that the most efficient solution scheme was
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The static deflections for the clamped outer boundary condition were obtained by
solution of the governing equation for the spatial domain. Because of numerical instability
associated with the “pseudo-load™ technique at large deflections, in the case of the simply
supported outer boundary, the static solution was obtained by solving the appropriate step
loading case with a viscous damping coefficient ¥ = 20 after Nath (1982). The resultant
deflection. following damping of the oscillatory motion, was taken as the static result.

4. RESULTS AND CONCLUSIONS

Transient results from this study are compared with those presented by Nath and Jain
(1983) and Dumir (1988) in Table 1. It should be noted that the results of Nath et a/. are
associated with the annular foundation inner edge boundary condition for the Pasternak
foundation not the continuous foundation as suggested by Dumir. The inner boundary
condition applied by Dumir for “zero generalized shear force V,” is applicable to the
continuous Pasternak foundation, explaining the unexpected increase in stiffness reported
for the plate/foundation system in this later paper.

Making appropriate transformations of these reported results in Table | it can be seen
that good agreement was achicved with the existing literature. It is worthy of note that
the deflection amplitudes used in this comparison mean that the in-planc contribution is
negligible, as can be seen from the results included from linear numerical analysis.

A better comparison of solution adequacy, involving in-plane deflection under both
boundary conditions, is shown in Tables 2 and 3 for the continuous and annular
foundations. Examination of the corresponding lincar results for these foundation cases
establishes the significance of in-plane deflection. Again, good agreement is achieved
between the results of Dumir (1988) attributed to the “annular™ foundation with thosce for
the continuous foundation.

Since the lincar and non-lincar Winkler model implies no interaction between adjacent
sections of the foundation, the results reported by Nath and Juin (1983) and Dumir
(1988} are independent of the foundation configuration for this characteristic. However,
the Pasternak model, because of the “shear layer”, exhibits interaction between adjucent
foundation sections; therefore the resultant deflection is 4 function of whether the foun-

Table 1. Comparison of maximum transicnt response 2( &), (€ = 5. ¢ = 1;3, f = 0.50, v, = 1/3)

Annular foundation Continuous foundition
Self Seif
Nath and
ke 'S Jain Dumirt  Non-linear Lincar Dumirt  Non-lincar  Lincar

Fixed edge outer boundary condition

100 0 0.2630 0.2624 0.2639 0.2644 0.2624 0.2639 0.2644
o 25 0.171s 01711 0.1713 0.1714 0.1164 0.1177 o.M
e 50 0.1288 0.1288 0.1281 0.1282 0.0 0.0780 0.0780
150 0 0.1934 0.1937 0.1927 0.1928 0.1937 0.1927 0.1928
150 50 0.1053 0.1056 0.1054 0.1054 0.0691 0.0685 0.0685
Simply supported outer boundary condition
100 0 0.3104 0312 0.3108 03114 03112 0.3108 03114
o 25 0.1933 0.1930 0.1962 0.1963 0.1416 0.1420 0.1420
100 50 0.1427 0.1428 0.1473 0.1474 0.0924 0.0928 0.0928
150 0 0.2029 0.2024 0.2018 0.2020 0.2029 0.2024 0.2020
150 50 0.1137 0.1138 0.1167 0.1167 0.0793 0.0795 0.0795

o Kla=8)] . glla=b)’]

p Y D
+ The columns have been transposed with respect to the presentation in Dumir (1988).
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Table 2. Maximum deflection for fixed edge plate 2(3),,, (= 15,2 =13, v, =13

Continuous foundation Annular foundation
K G Dumirt Non-linear Linear Non-linear Linear
[sotropic case, f§ = |
0 1.999 1.994 4.001 1.994 4.001
5 0 1.769 1.758 2928 1.758 2.928
10 0 1.566 1.566 2.262 1.566 2.262
S 1 [.344 1.349 1.663 1.609 2.348
1 1.203 1.202 1.377 1.423 1.876
5 2 1.053 1.054 .15t 1.460 1.932
10 2 0.944 0.947 1.011 1.290 1.584
Orthotropic case, ff = 3
0 0 1.525 1.528 2.667 1.528 2.667
5 0 1.383 1.379 2.102 1.379 2102
0w 0 1.249 1.250 1.696 1.250 1.696
5 1 1.118 1.120 1.363 1.247 1.690
6 1 1.007 101 1.168 1.127 1.395
5 2 0.912 0.915 1.015 1.126 1.395
1 2 0.834 0.830 0.903 1.017 1.185
t Sce Table 1.

dation is continuous or annular. To simplify the comparison only results for the Pasternak
foundation are considered.

The maximum deflection for the isotropic plate with a clamped or fixed edge outer
boundary on an annular foundation is shown by the dashed lines in Fig. 2 as a function of
untformly distributed step loading, while the static deflection for the equivalent uniform
load is represented by the solid lines. The results for the continuous foundation can be seen
in Fig. 3. The close agreement with the approximate maximum deflection reported by
Dumir (1988) (solid symbols) is apparent. The response for orthotropic annuli can be seen
in Figs 4 and § for the respective foundation configurations.

For the simply supported outer boundary edge the isotropic annuli results are given
in Figs 6 and 7 while those for the orthotropic annular plates are presented in Figs 8 and
9 for the annular and continuous foundations respectively. In all cases the annular dimension

Table 3. Maximum deflection for simply supported plate 2(),., (¢ =10, { = 1/3,

Yy = ”3)
Continuous foundation Annular foundation
K G Dumirt  Non-lincar Lincar Non-lincur Lincar
[sotropic case, fi = |
0 2.263 1.290 17.323 2,290 17.323
5 0 1.964 1.984 4.726 1.984 4.726
10 0 1.691 1.706 2.745 1.706 2745
5 1 1.461 1.474 2.028 1.699 2879
10 i 1.240 1.248 1.481 1422 1.926
5 2 1.091 [.103 1.254 1.469 2.040
6 2 0.940 0.944 1.012 1.236 1.488
Orthotropic case, ff = 3
0 0 1.752 1.773 6.195 1.7713 6.195
s 0 1.539 1.556 3115 1.556 3115
10 0 1.345 1.356 2.045 1.356 2.045
5 1 1.206 1.213 1.650 1.326 1.991
10 1 1.042 1.049 1.251 [.148 1.456
5 2 0.944 0.950 1.091 1.137 1.460
o 2 0.824 0.829 0.902 0.984 1.130

+See Table 1.
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Fig. 2. Deflection response of isotropic clamped plate on annular Pasternak foundation,
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Fig. 3. Deflection response of isotropic clamped plate on continuous Pasternak foundation.
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Fig. 6. Deflection response of isotropic simply supported plate on annular Pasternak foundation.

Deflection a,

Fig. 7. Deflection response of isotropic simply supported plate on continuous Pasternak foundation.
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considered was £ = 1/3 while the material properties where v = 0.25 for the isotropic plate
and § = 3. v, = 0.25 for the orthotropic case.

The decreasing deflection of the plate/foundation system as §, K and G increase
confirms the observation of Dumir (1988). It is apparent from both the figures and Tables
2 and 3 that while the effect of the geometric non-linearity is to increase the plate stiffness,
with increasing foundation stiffness this contribution to the rigidity becomes less significant.
The shear parameter G in the Pasternak foundation can be seen to have more effect in
decreasing deflection than the spring parameter K with the annular foundation case showing
that an increase in K by 3 is approximately equivalent to increasing G by | for both outer
boundary conditions as well as either an isotropic or orthotropic plate.

The greater significance of the foundation on the deflection of the simply supported
plates can be seen in comparing Figs 2-5 with Figs 6-9 respectively. extending the obser-
vation of Dumir to the annular foundation.

The relative roles of the geometric non-linearity on the stiffness of the plate/foundation
system as well as further confirmation of the significance of the foundation characteristic
for the respective outer boundary conditions can be obtained by comparison of Figs 10 and
11. The fractional difference between the linear and non-linear numerical solution establishes
the contribution of geometric non-linearity for the simply supported boundary condition
with low foundation rigidity. The greater influence of higher foundation rigidity on deflec-
tion for these boundary conditions is also apparent.

It can be concluded that for both outer boundary conditions as well as isotropic and
orthotropic plate materials the continuous foundation with a Pasternak characteristic has
greater rigidity than the annular foundation.
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