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Abstraet-The inl1uence of the elastic foundation configuration on the large del1ection aJlisymmetric
response ofcylindrically orthotropic thin annular plates is examined for uniformly distributed loads.
The solution of the dynamic form of the Von Karman type equations governing the behaviour of
the system is obtaint.'d using a fourth order finite different.-e representation for the spatial domain
with the Newmark.p scheme being used for the time domain. Results for the fixed edge and simply
supported immovable edge boundary conditions for a plate on a Pasternak foundation with or
without an annular cut·out are presented for both the static and step loading cases. The inner edge
lx>undary conditions for these configurations of a Pasternak foundation are examined and the
ilpparent anomaly of the ;\Rnul,1f foundation increasing the stiffness in the recent litemture
itltdresscd. The signilicitnce of the foundation p;lrilmeters on plate response as well itS the geometric
non-Iinc,lfity is considert.'d.

I. INTRODUCTION

With the economic demand for material etficiency combined with the need to improve the
resistance of structures to large dynamic loads such as can occur due to e;'lrthquakes.
industrial explosion or wave action in olfshore structures there has tx..'Cn ;'111 incre;.tsing
interest in large del1ection dynamic an.tlysis. Recent earthqlmke experience (Pender and
Robertson. 1987; Rutledge. 1(88) has focussed attention on the mounting and unchoring
of structures such as storage tanks und pressure vessels as well as heavy duty equipment.
This often involves the usc of annular plates in conjunction with elastic foundations.

Sinha (1963). using the Berger assumption (1955) to c1f\.'Ctivcly decouple the governing
equations describing the plate behaviour, investigated the geometric non-linear static del1cc­
tion of an isotropic circular phttc on a Winkler foundation based on a series solution. A
single term Galerkin technique was applied by Dalla (1974) and Banerjee (1976) with the
vulue of the Berger constant being determined by the specific boundary conditions following
appropriate transformation.

The dynamic geometric non-linear response ofan isotropic circular plate on a Winkler­
Pasternak foundation has been studied by Nath (1982) by extending the technique ofAlwar
and Nath (I (77) to include the foundation reaction. A backward difference Taylor series
expansion was used to linearize the dynamic form of the von Karman equations for the
plate/foundation combination with the spatial domain being described by a series solution
using Chebyshev polynomials. the associated recurrence relationships and the specified
boundary conditions. The time domain was represented by the Houbolt four-point algo­
rithm with the resultant set of equations solved to determine the coetficients for the
Chebyshev polynomials.

An alternative solution for an orthotropic plate on a Winkler-Pasternak foundation
was presented by Dumir (1987) using an orthogonal point collocation representation based
upon the 7.eros of a Legendre polynomial for the spatiul domain with the Newmark-fl
scheme defining the time domain.

The solution for orthotropic annular plates on elastic foundation was presented by
Nath and Jain (1983) using the Chebyshev polynomials and the implicit Houbolt scheme
with the inner boundary condition being that associated with an annular foundation.
Unfortunately the majority of the data presented are of a vertical deflection amplitude that
results in the in-plane deflection contribution being negligible. Recently. Dumir (1988)
extended the orthogonal point collocation method to consider orthotropic annular plates
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on an elastic foundation. rn addition an energy method to determine the maximum transient
deflection. using results from a static analysis. was presented. The selection of an inner
boundary condition appropriate to a continuous foundation. while stating that the study
presented results for an annular foundation. gave a deflection for the Pasternak foundation
which was less than that reported by Nath for equivalent load cases. Dumir attributed these
differences to Nath having used a continuous foundation.

To clarify this apparent anomaly the present investigation was carried out using finite
differences to represent the spatial domain and a Newmark-J3 recurrence scheme based
upon the finite element representation of the time domain. after Zienkiewicz (1977). The
dynamic von Karmim equations were solved for the Pasternak foundation with the geo­
metric non-linearity being implemented as a pseudo-load. Iteration to convergence was
carried out at each time step. Both the continuous and annular foundation were considered
and the resultant data examined in relation to previously reported information in the
literature.

2. GOVERNING EQUATION

The model used to define the reaction at the plate/foundation interface was

incorporating the well known cases used by Dumir (19g8)

The Winkler foundation

k, ;;:, o. 9 i= O. k, = () The Pasternak foundation (1954)

The Nonlinear Winkler Foundation following Mass.llas and
Kafousias (1979).

While the inertia of the foundation could be included. following Vlasov and Leontier (1966).
by the usc of an dli:ctive mass density for the plate. to simplify the case for the continuous
foundation the assumption that the foundation W.IS massless was adopted. It should be
noted that the dTective incorporation of the foundation mass modifies the relative dimen­
sionless time parameter but docs not inIluence the resultant amplitude of the deflection.

The two foundation cases considered were a continuous foundation (Fig. la) and an
annular foundation (Fig. I b). The inner boundary for the plate was a free edge condition

((1 I/r-----O-i bl w.'1

(b)

Fig. I. Geometry of ;mnular plates and foundations. (a) Continuous foundation. filled edge outer
boundary. (b) Annuklr foundation. simply supported. immovable edge outer boundary.
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while the outer boundary conditions considered were the fixed edge boundary and simply
supported immovable edge conditions.

The governing equation for the plate/foundation combination after Huang (1912) was

[ 2 fJ fJ JD 1\'"...,+ w.",- -s-lr.,.+ 1\\"., -q(r.I) + mhw,lI+mhk,.w.,+p(r.I)
r r ,.

I u 1- ~'fI '
11,,+ -u,-fJ, +(w,)(w,,)+ - ...-(It·.,)- =0. r' ,. .. :.r

where a = outer radius; b = inner radius; h = plate thickness; k,. == viscous damping;
m == plate density ;p(r. t) == load; q(r, I) == foundation reaction; r == radial position; 1I =in­
plane deflection; II' =vertical deflection; D == flexural rigidity; P== orthotropic parameter;

with £", £, and v,.. v, being the clastic moduli and Poisson's ratio for the plate material in
the circumferential and radial din.:ctions respectively. A subscript variable following a
comma denotes partial differenti<ttion with resp\-'Ct to the variable.

Substituting for the foundution reaction the non-dimensional form of the governing
equations becomes

where ct == w/,,; p == ria; IS = alit; ,= ulh; t = I(Dlmlw4) I 1; X = k,,(mha4ID)li2;
G =g(u1/£,); K 1 = k ,(a 4/£,); ~ = hlu; K} =k}(a 4/£,h 2

); e(p, t) = ,/(r, 1)(£1
4/£11 4

).

2.1. BOImdary condi/iotl.¥
The boundary conditions used to solve the governing equations were as follows.

2.1.1. Inner hOlmtiary p = ~. Since the inner edge is a free boundary the radial in-plane
stress is equated to zero, i.e.

For the linear and non-linear Winkler foundation models the resultant deflection was
independent of the foundation configuration. For the Pasternak model the response was a
function of whether the associatcd "shear layer" was continuous at the inncr boundary or
discontinuous, because this determined the generalized shear force acting. The model
proposed by Dumir (1988) for the annular foundation does not allow for discontinuity in
the derivative (".,,) with respect to the foundation and therefore the resultant values of
deflection given are appropriate to the continuous foundation not the unnular foundation.



1076 J. S. SMAlLL

(i) Continuous foundation
The generalized shear force for the inner free edge is given by

(
1 P 12(P-vl/) )

4J = ':./1/1/1 + P'1../1/1 - p~ ':./1 - P G'1..P = O.

(ii) Annular foundation

2.1.2. Ollter hOlil/dary p = I.

(i) Clamped immovable edge condition

!X =o. C'1.._- - 0
(:p - • ,= O.

(ii) Simply supported immovable edge condition

IX =o.

3. NUMERICAL SOLUTION

A Iinite dil1i:rence representation for the spatial domain was used to numerically solve
the governing equations for the given houndary conditions while a recursive scheme was
adopted to modd the time domain following Zienkiewiez (1977).

The geometric non-linear contrihution wus implemented as a "pseudo-lotld" associated
with the forcing function. Therefore the only matrix inversions required were those associ­
ated with estahlishing the initial finite difference schemes for the tf41nsverse and in-plane
del1eclion of the plate. The initial solution for transverse del1ection was calculated using
the in-plane del1ection from the preceding time step and iteration based upon the updated
"pseudo-Io<ld" carried out until the convergence criterion was satisfied. The convergence
criterion adopted was that the variation for the vertical deflection between successive
iterations was less than 0.1 %.

The governing equation in the sputiul domain for the transverse del1ection at uny time
t' wus

1\'Ix." +Ccr. r +Kx+f = 0

where 1\'1 = mass matrix; = identity mutrix becuuse of non-dimensional time parameter
used; C = viscous dumping coefficient; K = matrix of coefficients; Gt = transverse dis­
plucement vector: F = the forcing function contuining "pseudo-load".

The time domain wus represented by the following generalized three-point recursive
relationship

[M +i'drC+fJdt'~Klxn+ I +[ -2M + (\ - 2Y)dt'C+<! +y-2fJ)dt'~KIGtn

+[:\1 + (i' - I )drC + <! -y + fJ)dt'~Klxn_ I + (fJdt' l)fn + I

+ (1 +}'-2fJ)dt'~fn + (! -y+ fJ)dt'lFn _ 1 = 0

and numerical experimentution was carried out to determine the optimum procedure for
the specific solution scheme. It was established that the most efficient solution scheme was
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i' = !, fJ =1while the time step was taken as l1t =0.002. The solutions were obtained using
\I~ =0.25.

The static deflections for the clamped outer boundary condition were obtained by
solution of the governing equation for the spatial domain. Because of numerical instability
associated with the "pseudo-load" technique at large deflections. in the case of the simply
supported outer boundary, the static solution was obtained by solving the appropriate step
loading case with a viscous damping coefficient X = 20 after Nath (1982). The resultant
deflection. following damping of the oscillatory motion, was taken as the static result.

4. RESULTS AND CONCLUSIONS

Transient results from this study are compared with those presented by Nath and Jain
(1983) and Dumir (1988) in Table I. It should be noted that the results of Nath et al. are
associated with the annular foundation inner edge boundary condition for the Pasternak
foundation not the continuous foundation as suggested by Dumir. The inner boundary
condition applied by Dumir for "zero generalized shear force V," is applicable to the
continuous Pasternak foundation, explaining the unexpected increase in stiffness reported
for the plate/foundation system in this later paper.

Making appropriate transformations of these reported results in Table I it can be seen
that good agreement was achieved with the existing litemture. It is worthy of note that
the ddlection amplitudes used in this comparison mean that the in-pl~lne contribution is
negligible, as can be seen from the results included from linear numerical analysis.

A better comparison of solution adequacy, involving in-plane deflection under both
boundilry conditions. is shown in Tables 2 and 3 for the continuous and annular
fi.lllndations. EX~lmination of the corresponding linear results for these foundation cases
establishes the significance of in-phlne defl~..ction. Again, good agreement is achieved
oetween the results of Dumir (1988) ~lttributed to the "annular" foundiltion with those for
the continuous foundation.

Since the linear and non-linear Winkler model implies no intenu:tion between adjacent
sections of the li.lUndation. the results reported by Nath and Jain (1983) and Dumir
(flJXX) :Ire independent of the foundation configuration for this characteristic. However.
the Pastern:lk model. hcC<lLISC of the "she~tr layer", exhibits interaction between adjacent
foundation scctions; therefore the resultant deflection is a function of whether the foun-

T;Ihle I. Cumparison of maximum Iransienl response :Z(~)m•• (c = 5. ~ '" 1/3./1'" 0.50. \'0 '" 1/3)

Annular fuundaliun Cunlinuous fuundalion

Self Self
Nath and

k' !I J;Iin Dumirt Non-line;lr Linear Dumirt Nun-linear Linear

Fixed \,'dge outer boundary condition
100 0 0.2630 0.2624 0.2639 0.2644 0.2624 0.2639 0.2644
Ino 25 0.1715 0.1711 0.t713 0.1714 0.1164 0.1177 0.1177
IUO 50 0.1288 0.1288 0.1281 0.1282 0.0771 0.07110 0.0780
150 0 0.1934 0.1937 0.1927 0.1928 0.1937 0.1927 0.1928
150 50 0.1055 0.1056 0.1054 0.1054 0.0691 0.0685 0.0685

Simply supported outer bound;lry condition
ilK) 0 0.3104 0.3112 0.3108 0.3114 0.3112 0.3108 0.3114
100 25 0.1933 0.1930 0.1962 0.1963 0.1416 0.1420 0.1420
100 50 0.1427 0.1428 0.1473 0.1474 0.0924 0.092!! 0.0928
150 0 0.2029 0.2024 0.2018 0.2020 0.2029 0.2024 0.2020
ISO 50 0.1137 0.1138 0.1167 0.1167 0.0793 0.0795 0.0795

. k[(t/-h)'] g[(t/-h):j
k ='--- 9'=--D-'D .

t Thc columns h;lve hccn Ir,IOspo:;cd with respecl 10 the presentation in Durnir (1988).
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Table 2. Maximum deflection for fixed edge plate %(.;1...... (E = IS.'; = 113. "II = 13)

Continuous foundation Annular foundation

K G Dumirt Non-linear Linear Non-linear Linear

Isotropic case. P= I
0 0 1.999 1.994 4.001 1.994 4.001
5 0 1.769 1.758 2.928 1.758 2.928

10 0 1.566 1.566 2.262 1.566 2.262
5 I 1.344 1.349 1.663 1.609 2.348

10 I 1.203 1.202 1.377 1.423 1.876
5 2 1.053 1.054 1.151 IA60 1.932

10 2 0.944 0.947 1.011 1.290 1.584

Orthotropic case. P= 3
0 0 1.525 1.528 2.667 1.528 2.667
5 0 1.383 1.379 2.102 1.379 2.102

10 0 1.249 1.250 1.696 1.250 1.696
5 I 1.118 1.120 1.363 1.247 1.690

10 I 1.007 1.011 1.168 I.m 1.395
5 2 0.912 0.915 1.015 1.126 1.395

10 2 0.834 0.830 0.903 1.017 I.IS5

t Sec Table I.

dation is continuous or annular. To simplify the comparison only results for the Pastermlk
foundation arc considered.

The maximum deflection for the isotropic plate with a damped or fixed edge outcr
boundary on ,til ,mnul,lr foundation is shown by the dashed lines in Fig. 2 as a function of
uniformly distributed step loading. while the static dcl1ection for the equivalent uniform
load is represented by the solid lines. The results for the continuous foundiltion can be seen
in Fig. 3. The close agreement with the approximate maximum del1ection reported by
Dumir (19HH) (solid symbols) is apparent. The response for orthotropic annuli c.ln be seen
in Figs 4 and 5 for the respective foundation configurations.

For the simply supported outer boundary edge the isotropic annuli results arc given
in rigs 6 and 7 while those for the orthotropic annul'lr plates are presented in Figs 8 and
9 for the annular and continuous found.ltions respectively. In all cases the annular dimension

Table 3. Maximum dellc.-ction for simply supported plate :x(';)..", (I: = 10. .; = 1/3.
\'" = 1/3)

Continuous foundation Annular foundation

K G Dumirt Non·linear Linear Non·linear Linear

Isotropic case. {I = I
0 0 2.263 2.290 17.323 2.290 17.323
5 0 1.964 1.984 4.726 1.9114 4.726

10 0 1.691 1.706 2.745 1.706 2.745
5 1 1.461 1.474 2.0211 1.699 2.1179

10 I 1.240 1.248 1.4111 1.422 1.926
5 2 1.091 1.103 1.254 1.469 2.040

10 2 O.9.JO 0.944 1.012 1.236 1.4Kl!

Orthotropic case. P=3
0 0 1.752 1.773 6.195 1.773 6.195
5 0 1.539 1.556 3.115 1.556 3.115

10 0 1.345 1.356 2.045 U56 2.045
5 1 1.206 1.213 1.650 1.326 1.991

10 1 1.042 1.049 1.251 1.14K IAS6
5 2 0.944 0.950 1.091 1.137 1.460

10 2 0.824 0.829 0.902 0.984 1.130

t Sec Table I.
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considered was; = 1/3 while the material properties where v = 0.25 for the isotropic plate
and p= 3. v" =0.25 for the orthotropic case.

The decreasing deflection of the plate/foundation system as P. K and G increase
confirms the observation of Dumir (1988). It is apparent from both the figures and Tables
2 and 3 that while the effect of the geometric non-linearity is to increase the plate stiffness,
with increasing foundation stiffness this contribution to the rigidity becomes less significant.
The shear parameter G in the Pasternak foundation can be seen to have more effect in
decreasing deflection than the spring parameter K with the annular foundation case showing
that an increase in K by 5 is approximately equivalent to increasing G by I for both outer
boundary conditions as well as either an isotropic or orthotropic plate.

The greater significance of the foundation on the deflection of the simply supported
plates can be seen in comparing Figs 2-5 with Figs 6-9 respectively. extending the obser­
vation of Dumir to the unnular foundation.

The relative roles of the geometric non-linearity on the stiffness of the plate/foundation
system as well as further confirmation of the significance of the foundation characteristic
for the respective outer boundary conditions can be obtained by comparison of Figs 10 and
II. The fractional difference between the linear and non-linear numerical solution establishes
the contribution of geometric non-linearity for the simply supported boundary condition
with low foundation rigidity. The greater influence of higher foundation rigidity on deflec­
tion for these boundary conditions is also apparent.

It can be concluded that for both outer boundary conditions as well as isotropic and
orthotropic plate materiuls the continuous foundution with a Pasternuk charucteristic h.ls
gre.lter rigidity than the unnulur foundation.
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